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ABSTRACT

This work is an examination of the state-of-the-art of the

two layer, integrated type atmospheric mixed-layer models with

emphasis on applications to the marine regime. A linked synoptic

scale mixed-layer microphysical scale model structure is suggested

for short term (24 hour) forecasts of atmospheric variables with

naval applications. Several potential deficiencies in the present

knowledge are identified for physical parameterizations (particu-

larly the entrainment rate) and the synoptic scale forcing

requirements. It is concluded that these models, though

promising, have not been verified for a wide range of atmospheric

conditions.

- I



I. SUMMARY

A. INTRODUCTION

It is clear that boundary layer models hold great potential

for extending and expanding local atmospheric assessments. The

integrated type mixed layer model is one obvious candidate for

this application, particularly over the ocean. Second order

*closure models are also likely candidates, but because of their

much greater computer requirements, they will probably be

operational somewhat further in the future. The integrated model

employs rate equations for the mean quantities only, assumes

linear vertical flux profiles and obtains entrainment rates and

turbulence by empirical methods. The second order closure models

are considerably more complex. Since our own area of expertise is

with the integrated model, we shall not discuss second order

closure further.

The central text of this paper is an exploration of the

state-of-the-art for mixed layer models with a focus on the

sources of uncertainty and areas needing development. We will

also discuss, somewhat more briefly, the present situation in

obtaining operational output and problems associated with actually

implementing a field version of this model.

B. CONCLUSIONS

Barring some very extensive breakthroughs in satellite remote

sensing technology, local measurements (such as radiosondes) and

meteorological observations will be required to provide a spectrum

of information of atmospheric effects on Naval operations.

Extending these measurements through 6-to-24 hour forecasts will
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probably require on-board computer based atmospheric models

supported by large scale numerical field models with regional

window capability (for example, the US Navy NORAPS system). The

two or three layer integrated type marine mixed layer model is a

very good choice for these local assessments because it is ideally

suited to the good horizontal homogeneity and near dynamic

equilibrium situations that often characterize the open ocean.

Thus, the synoptic scale model, the local data, the integrated

boundary layer model and the operational output parameterization

could be linked together to produce local boundary layer

forecasts. A sample flow diagram for such a system is given in

Fig. I.

The feasibility of a linked synoptic-boundary

layer-micrometeorology model is primarily dependent upon three

issues: 1) can a synoptic scale model (with regional resolution)

provide sufficiently accurate forecasts of the synoptic forcing,

2) given accurate synoptic forcing, can the integrated model

provide sufficiently accurate forecasts of the boundary layer

evolutions and 3) can the relevant operation information be

extracted from the mixed layer model structure? This paper will

concentrate on question two, with a brief background on the third

question. The first question is beyond the area of expertise of

the authors of this paper although we have examined certain

alternatives to the synoptic scale model (namely, single station

assessment techniiies).

The following conclusions will be discussed in the

examination of the mixed layer model:
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1) The basic model structure is obtained from simple

boundary layer averages of conservative (or near conservative)

quantities. The evolution of the boundary layer is then predicted

from rate equations derived from the conservative expression. K
There are a few special cases to consider (temperature and mean

wind), but in principle the model structure is extremely simple.

2) The internal structure of the model requires the parame-

terization of certain boundary layer energy transfer processes.

These parameterizations are in fairly good shape for surface

fluxes, cloud microphysics and radiative flux interactions. There

is still some work to be done in these areas, but most of the

questions will probably be resolved within the next few years.

Conversely, the entrainment parameterizations are not adequate to

handle several well known entrainment mechanisms (inversion wind

shear, cloud top instability or atmospheric wave phenomena, for

example). Since inversion wind shear conditions are common, this

particular process needs further investigation.

3) The synoptic and mesoscale effects (subsidence and

advection) are often as important as entrainment. Synoptic scale

numerical models are very important here because not only can they

provide the relevant data, but also they are sources of forecasts

of synoptic scale forcing. Whether the present (or near future)

models will be adequate has not been determined. The mesoscale

gradient method (using satellite remote sensed data perhaps) and

3
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single station methods may be able to provide "nowcasts" of

certain synoptic terms. For example, the sea-surface temperature

field will almost certainly be required to use the model

successfully. The single station rawindsonde can provide local

values of subsidence and thermal advection but the accuracy is

marginal. In short, the required large scale forcing for a

complete model application is questionable.

4) The algorithms required to extract operational variables

from mixed layer parameters are in an advanced state of

development. There are some problems remaining (continental

aerosols, for example) but it is our judgement that most of the

bulk atmospheric characterizations are now available to reasonable

accuracy.

5) The full model structure as defined in Fig. 1 is

completely unverified. The boundary layer model has only been

successfully verified on a few selected sets of atmospheric data.

Of course, most of the individual components of the model can be

verified separately. For example, a candidate radiation flux

profile parameterization can be tested against measured radiation

profiles without being concerned with the evolution of the

boundary layer. Assuming that reasonably accurate boundary layer

expressions and large scale forcing data are used, then testing

the model against data is basically a verification of the model

simplifying assumptions and the particular entrainment parameteri-

zation chosen by the researcher. A comprehensive study of the

accuracy of the boundary layer model over a wide range of marine

atmospheric conditions has yet to be performed.

m nil ii I~ll n n mnl~ l lll ................... .. ...5



II. MODEL BACKGROUND

Boundary layer models consider two basic atmospheric regions:

the boundary layer (Z<h where Z is the height above the surface)

and the free atmosphere (Z>h) separated by a thin transition

region at height, h. The boundary layer is turbulent while the

free atmosphere is relatively non-turbulent. The boundary layer

can be thought of as an interaction region between two large

masses - the ocean and the free atmosphere. The boundary layer

interacts with the ocean at the sea surface and with the free

atmosphere at the transition zone (usually referred to as the

inversion). Because of the strong turbulence in the boundary

layer, it is quite homogeneously mixed vertically (thus the

terminology "well-mixed" and "mixed-layer").

The well-mixed nature of the boundary layer implies that

certain meteorological variables are height independent for Z<h.

For example, the water vapor mixing ratio, q = Q/, where Q is the

density of atmospheric water vapor and o is the density of air

(Fig. 2). Thus , we assert that any well-mixed meteorological

varable, * , can be represented as

W(Z) = m Z<h (la)

o (Z) om + a +fr0(Z-h) Z>h (Ib)

where m is the well-mixed value, AO is the "jump" at the

inversion and r is the mean vertical gradient of (assumed zero

for Zch) in the free atmosphere. The height dependent variable,

O(Z), is now reduced to three parameters: Pm, AO andr . This

is known as a "zero-order" model since we allow a discontinuity at

the inversion. The purpose of the model is simply to predict the

time evolution of these three parameters for each variable of

6
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well-mixed layer is h capped by an inversion of
thickness ah.
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interest and relate these parameters to quantities of direct

operational relevance. The basic method is to relate $ at some

time, t, ( (t)) to an initial value, t'i, through the rate

equation, dO/dt, for a small time step t - ti ,

(t) - i + (doIdt) (t - ti )  (2)

The rate equations are relationships of do/dt to the physical

processes in the atmosphere. For the boundary layer, the major

processes are interactions with the surface and the free

atmosphere.

Interaction of the boundary layer air with the ocean surface

is the primary source of boundary layer turbulence. (Note,

however, that cloud radiative cooling and inversion wind shear can

also generate turbulence.) The free atmosphere is effectively

"cut-off" from this turbulence by the inversion zone. The

interaction with the surface is characterized by surface fluxes of

momentum (wind), sensible heat (temperature) and latent heat of

evaporation (water vapor). Since the fluxes are essentially zero

for Z>h, they must vary with height within the boundary layer. In

other words, the vertical flux of the quantity , designated

F,(Z), is function of Z. The height dependence of F is a

critical factor in the temporal evolution of M (Z). For a

conservative quantity, the rate of change of 0 with time due to

the flux is equal to the vertical gradient of the flux

d /dt - - (Z)/dZ (3)

The well-mixed assumption (dO/dZ - 0) in the boundary layer is

therefore equivalent to assuming that dF (Z)/dZ is constant, or

that FW(Z) has a linear height dependence.

8
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Equation 3 applies to changes in the atmospheric reference

frame (Lagrangian). If we consider at a point fixed above the

earth's surface (rather than a point that translates with the

atmospheric motion), then we must account for the possibility that

may change with time due to horizontal gradients in 0. If we

define the mean horizontal wind vector, U, the horizontal

gradient, 7H , the mean vertical air velocity, W and the

vertical gradient of 0, dO/dZ, then

dO/dt-Od/dt + U'VHO +W d4b/dZ (4)

The horizontal term is referred to as "advection" and the vertical

term is referred to as "subsidence". Thus, the equation

dO/dt -UHO -1W dO/dZ - dF./dZ (5)

allows us, in principal, to predict the evolution of a

conservative quantity from an initial measurement. Note that most

of the terms in Equation 5 are time and height dependent.

The next step in applying Equation 5 is to consider the

boundary layer and free atmosphere separately (in the spirit of

Equation 1). In the boundary layer, we integrate Equation 5 to

form a layer average (thus the terminology "integrated" model),
h

<X> - 1/h X(Z)dZ,

1/h Ihd. m/dt dZ - -1/hoIhEU-VHO + dFO/dZdZ (6)

where dO/dZ - 0 and 0 Om for Zh. Therefore,

9i "



dam/dt = (Fo - Foh)/h - 1/hf -. VHOdZ (7)

0

where Fo is the surface flux and Fh is the flux at the

inversion.

The interaction of the boundary layer with the surface causes

Om to approach the characteristics of the sea surface (via the

surface flux, F~o). Similarly, the boundary layer interacts

with the free atmosphere at its upper boundary through a process

called "entrainment" (via the flux Foh). Entrainment is the

process whereby free atmospheric air is brought into the boundary

layer by the turbulent erosion of the transition region. Thus,

entrainment tends to increase h at a rate characterized by the

entrainment velocity, We# and causes the boundary layer to

approach the properties of the free atmosphere. The increase in h

is expressed by

dh/dt = We + W - U • VHh (8)

Entrainment produces the flux at the top of the boundary layer.

This flux is analagous to the surface flux at the sea-air boundary

(only in this case the "surface" is the transition zone to the

free atmosphere). The entrainment velocity is simply related to

Oh by

Fh - -We A (9)

10



The rate equations for conservative quantities can now be

written for both atmospheric regions

d~m/dt = (F~o + WeA1)/h - <UH ; Zh (lOa)

do/dt = -U • o- r 1' Z-h (lOb)

d(A)/dt - dO/dt)Z=h+ -d4m/dt - rdh/dt ; Z=h (lOc)

These equations describe only the evolution due to turbulent

transport and large scale advection. For atmospheric quantities

of interest (for example, temperature), other processes can appear

as source and sink terms. In the case of water vapor, vapor can

be lost due to formation of liquid water droplets (condensation)

and subsequent loss from rainout. For temperature, there is

adiabatic cooling with increasing altitude, latent heat released

due to condensation and heat transfers associated with absorption

and emission of electromagnetic radiation. Such effects are most

easily accounted for by creating an appropriate variable which is

conserved. For example, rather than apply Equation 10 to the

water vapor mixing ratio, qv, we use the total water

qt = qv + q Z where qk is the liquid water mixing ratio. For

temperature, we define the moist static energy, H,

H - Cp(T + .0098Z) + Leq t  (I1)

where cp is the heat capacity of air and Le is the latent heat

11



of vaporization of liquid water. The modifications required to

account for radiative flux divergence are now quite simple; rather

than use FH(Z) in Equation 10a, we use the sum of FH(Z) and

the net radiative flux R(Z).

dHm/dt - (FHo + Ro + WeAH - RH)/h - <.VHH> (12)

The application of the total model now requires several

steps: 1) parameterizatin of physical processes (for example,

entrainment), 2) development of techniques to obtain the relevant

physical data (for example, subsidence velocity W and the

horizontal gradient terms), 3) development of the relationships of

conserved quantities to more meaningful meteorological data (for

example, the relationship of temperature to moist static energy),

and 4) development of methods to calculate operational variables

(for example, profiles of refractive-index structure function

parameter, Cn2 ) from model variables.

12
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III. MODEL PERSPECTIVE

Before a detailed analysis of the integrated model, it is

important to clearly state why this approach cannot be a cure-all

for all atmospheric predictive problems. This model contains

certain simplifying assumptions that automatically reduce its

generality and limit the scope of its application. Requirements

for the two layer model are:

I) Clearly defined mixed layer (or at least a capping

inversion).

2) Surface evaporation leading to stratus type clouds

confined to hc<Z<h where hc is the lifting

condensation level.

3) Primary source of vertical transport is turbulent mixing.

4) Moderate or predictable synoptic scale thermal changes (a

few "C/day).

5) Near adiabatic liquid water profiles in the stratus

cloud.

6) Moderate clear-sky net radiative heating changes

(+1fC/day).

7) Moderate or predictable horizontal wind divergence

(I D I - 10-5 sec-1 ).

Although these assumptions are quite reasonable over a

considerable fraction of the world's oceans, there are significant

global areas where they break down. For example, in tropical

regions much of the vertical transport is due to large scale

convergence (the Intertropic Convergence Zone). Because the total

water vapor content of the air is greater (higher sea surface

13



temperatures) the clouds have much more buoyancy from latent heat

of condensation. These highly buoyant clouds cannot be confined

by the inversion so they break through and rise to great altitudes

as classic free convection cells. The large bouyant and turbulent

mixing processes in the cloud tend to destroy the adiabatic

(equilibrium) liquid water profile. Rather than entraining upper

layer air into the mixed layer, the convective cells draw air out

of the mixed layer into the cell (and, therefore, the upper air)

causing a lowering of the mixed layer height. This process is

called cloud induced subsidence or detrainment. Considerable work

is now underway to apply the integrated model to this case using

an additional layer (two inversions) and parameterizations of

cumulus clouds.

Another case for which this model cannot be used is near

frontal zones. Clearly, almost every assumption listed can be

expected to fail in the vicinity of a strong front. As a result,

we do not expect the model to be very useful at higher latitudes

during the winter.

Despite these disclaimers, the model does have a wide range

of utility. A recent paper by Kraus and Schaller shows examples

of mixed layer model application to four different climate

regions: tradewind, California coast, Norwegian Sea and the Arctic

Ocean (summer).

14



IV. PHYSICAL PROCESSES

Parameterization of the physical processes is essentially the

art of calculating the unknown from the known. For mixed -layer

models, the known is primarily the mean meteorological profiles,

basic atmospheric thermodynamics and a compendium of relevant

atmospheric data (such as the radiant intensity from the sun at

the top of the atmosphere). This section will be devoted to an

examination of various parameterizations used to obtain each term

in the rate equations.

A. Surface Fluxes

The bulk aerodynamic method is used to obtain the surface

fluxes of momentum, sensible heat and water vapor. The basic

assumption of this method is that the flux is driven by the

sea-air bulk difference of the variable

F Cl/2 (0s -$M )U *  (13)

where the subscript "s" refers to the sea-surface value and U*

is the friction velocity

U. = (Fuo/p)l/2 = Cul/ 2U (14)

where U is the wind speed near the surface (Z-10m). The quantity

C is known as the drag coefficient (typically C 1/2 0.035).

The bulk method has been so well verified that it is

non-controversial and further discussion in the mixed layer model

context is not needed.

15
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B. Clouds

There are several factors to consider when dealing with

boundary layer clouds: cloud thickness, liquid water profile and

cloud droplet size distribution.

i) The most common assumption is that the cloud bottom is at

a height hc equal to the lifting condensation level. Since we

are assuming constant potential temperature

(=T + .0098Z) and water vapor mixing ratio (qv = qt) in the

noncloud region (Z<hc), hc is easily calculated from the near

surface temperature (T) and dew-point temperature (Td)

hc = (T - Td)/0.00804 (15)

where 0.00804 is the difference in the lapse rate of T and Td

under well mixed conditions. However, because hc is very

sensitive to the 9 and q profile in the mixed layer, small

deviations from the well-mixed assumption (which for most other

purposes are not significant) cause large changes in h. (and,

therefore, the cloud radiative effects). Since warm, dry air is

entrained into the boundary layer at the top, it is generally

observed that qtm decreases and em increases slightly with

increasing height in the mixed layer. Therefore, hc is actually

considerably greater (thinner cloud) than hc calculated from

near surface observations using Equation 15. The error can often

be more than 100m, which is significant for clouds that are

typically 200 to 500m thick. At the moment, only "ad hoc" methods

are available for correcting for this effect. These methods allow

16



qtm and Hm to have small gradients that depend on the

surface flux and the entrainment rate.

2) Most mixed layer models calculate the liquid water

profile in the cloud based on the same adiabatic assumption

(qtm and Hm are height independent for Z'h). In other

words, given qt' H and Z one can uniquely determine q.

Experimentally, it has been found that the liquid water profile is

almost always less than the adiabatic value for the reasons

explained in part 1. If we use a model that allows a slight

decrease of qtm and a slight increase of Hm, then the cloud

liquid water profile will be decreased. Since the model contains

arbitrary constants, we simply make adjustments to obtain

agreement with the measurements (roughly a 30% reduction of liquid

water from the adiabatic value).

3) Cloud droplet spectra used in most mixed layer models are

based on strictly empirical parameterizations of field

measurements. Unfortunately, the measurements are extremely

sparse and not very consistent. The most credible data indicates

a fairly constant total number density, N, with the mean radius of

the cloud drops increasing with height in the cloud (rm - 2um to

rm - 15pm). Sample data are shown in Fig. 3. There are data

that indicate fairly constant rm but an increasing N with

altitude (for example, 100 cm- 3 to 300 cm-3 ). There is

considerable evidence that near the cloud top, variations in

liquid water are due to variations in N while rm remains fairly

constant. It has been suggested that this is due to the

inhomogeneous mixing of cloud air with newly entrained clear air.

17
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Figure 3. Cloud droplet spectral parameters from mid-Atlantic
stratus (Ref.13). The dispersion is the ratio of the
standard deviation to the mean radius of the size
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Obviously, the integrated cloud droplet volume spectrum should

give the correct liquid water at each altitude

qt Q (Z) = pwf1 4/3 tr3 (dN/dr)dr (16)

where Pw is the density of water, r the droplet radius and dN/dr

the droplet size spectrum. There is also a scale problem because

most of the liquid water is in the larger drops (r>10Um) while

most of the shortwave (solar) radiation interaction is determined

by smaller droplets. Therefore, one can have two different

empirical droplet distributions, both scaled by the liquid water,

with quite different short wave radiation absorption. In fact, it

has been shown that the longwave emission, short wave absorption

and the entrainment rate are all dependent upon the droplet

distribution. Since this is a field of very active research, it

is probable that good empirical models will be available very

soon.

C. Radiation

Mathematical modeling of radiative flux transfer is an

extensively developed subject. In general, the radiative effects

can be calculated to a precision far exceeding the quality of the

input data. In fact, the main problem is to choose a method of

minimum complexity appropriate to the accuracy of the data to be

used. Unfortunately, even the simple radiative transfer models

are still extremely complex in comparison to most other physical

parameterizations used in the mixed layer model. Uncertainty in

background aerosols, atmospheric absorbing gases (water vapor,

19



carbon dioxide, ozone) and cloud droplet size spectra are obvious

sources of error in radiation calculations. A comparison of two

models ,ith aircraft measurements of the radiative flux divergence

is shown in Fig. 4.

Most models consider longwave and shortwave radiation

separately. Typically, radiation effects are calculated only

inside the cloud layer (hc < Z<h). Radiative heating and

cooling rates in clear air are on the order of 1°C/day which is

approximately the accuracy of even the best models, given typical

input data. Earlier models that simply assign a constant long

wave cooling rate to the cloud are now considered to be too crude

because they neglect the dependence of the downward flux

(effective sky temperature) on upper atmosphere properties

(primarily water vapor content) and they assume the cloud is

totally "black" regardless of cloud thickness. Actually, the

emissivity, E, of clouds in the long wave region does not approach

unity until h-hc - 10Om. In the longwave region, the absorption

is not extremely sensitive to variations in the droplet spectra

typically found in clouds; it turns out that the emissivity can be

parameterized in terms of the total liquid water, W

h
W- pq ZdZ (17a)
..hc

E 1 - exp(-0.138W) (17b)

20
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The cloud top cooling rate can be estimated from the cloud top

temperature, Th , and the effective sky temperature, Tsky,

using the Stefan-Bolzmann law

,!Rh = Ea(Th4 -Tsky4 )

where a is Stefan's constant. Similarly, the cloud bottom is

heated by infrared radiation from the sea surface (which is

usually warmer than the cloud). Although this approach is quite

simple for calculating the cooling rate, it leads to complications

when calculating the effect the radiative flux divergence has on

the entrainment rate (which is sensitive to the actual vertical

distribution of flux divergence within the cloud). This will be

discussed further in the section on entrainment rate.

In the shortwave region, the emissivity approach (Equation

16) is not very useful because shortwave extinction is dominated

by scattering (as opposed to absorption). Thus, the direct solar

component incident at the cloud top is attenuated rapidly as the

cloud is penetrated, but the vast majority of the radiation lost

from the direct beam does not warm the cloud, but is simply

scattered. This scattered radiation forms a second component

usually referred to as the "diffuse" solar radiation. A small

fraction of the direct and diffuse radiation is absorbed by the

cloud droplets, thus warming the boundary layer. The amount of

heating depends on the solar zenith angle, the droplet spectrum,

the droplet index of refraction and the albedo of the sea surface.
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A number of methods are available for calculating the short

wave heating in clouds. The so-called "two stream" approximation,

where the scattered radiation is divided into a forward component

and a component with an angular distribution calculated from the

droplet spectrum, is certainly accurate enough for mixed layer

model applications. This method divides the cloud into several

(typically four) layers in the vertical to properly account for

the redistribution of direct and diffuse radiation as a function

of height in the cloud. An excellent review of this subject has

been published by Zdunkowski et al (1980).

D. Entrainment

Fluxes at the top of the boundary layer are due to the

entrainment of free atmospheric air. We must determine this flux

for each variable of interest; for N variables we have N unknown

fluxes, Fsh. Eq. 9 relates Fsh to the entrainment velocity,

We, and the jump in $ across the inversion, A . It appears we

have traded one unknown (Fh) for two (We and AO). Actually,

one value of We is appropriate for all Fh and the jumps are

not unknowns which must be parameterized but instead are

properties which can be modeled from the initial measurements.

Thus, we have reduced the N unknown fluxes to one unknown

parameter, We. The problem left is to determine We'

The entrainment process has been investigated through labora-

tory simulations, three-dimensional numerical models, field meas-

urements (primarily with aircraft) and theoretical simplification

of the turbulent kinetic energy balance expressions (this is the
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so-called "closure" assumption). The number of entrainment

relations available is approxiamtely equal to the number of

investigators in the field, which is an indication of the

complexity of the problem. Basically, since entrainment is the

erosion of the inversion layer by boundary layer turbulence, the

entrainment rate depends on the intensity of turbulence at the top

of the boundary layer, the stability of the inversion layer and

the stability of the upper atmosphere. The virtual potential

temperature, Ov, is an index of the hydrostatic stability of

air. If one parcel of air has greater ev than another, it is

said to be more buoyant. Thus, the jump in ev across the

inversion, Aev , is a primary indicator of the resistance of the

inversion to turbulence. Turbulence at the inversion available

for entrainment must be either produced at the inversion or

transported to the inversion from production regions in the lower

parts of the boundary layer. Thus, all processes that create

turbulence in the boundary layer are potential sources of

entrainment energy. Since turbulence is rapidly dissipated by

viscous forces, sources near the inversion tend to be more

efficient at enhancing the entrainment process.

The simplest case to deal with is the cloud free boundary

layer with negligible jump in the mean wind vector at the

inversion. Since the boundary layer turbulence in this case is

driven by the surface flux only, the entrainment flux is assumed

to be a fraction of the surface flux

Fe h -WeAev - A Fe o
V V
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where the fraction, A, has been found to be about 0.2. Since

Aev must be positive (otherwise, no inversion exists), the

negative value of Fa h is simply a reflection of the fact that
v

the boundary layer turbulence must do work to entrain free

atmospheric air across the highly stable inversion. Thus, the

buoyancy entrainment flux represents a turbulence energy loss

mechanism which (along with viscous dissipation) is balanced by

turbulence produced in the lower boundary layer that has been

transported to the inversion.

Although Eq. 18 is elegant in its simplicity, it is only

applicable in cloud free, light wind situations. Clouds are

important because they are a source of longwave cooling at the top

of the boundary layer. Since cooling at the top is equivalent to

heating at the bottom, clouds are source of convective (buoyant)

production of turbulence and, therefore, entrainment. Since the

longwave and shortwave fluxes are distributed differently in the

cloud, the entrainment rate also depends on the shortwave profile

(Fig. 5). Assuming one can calculate the cloud properties and

and radiative flux profiles, then, in principle, the cloud

entrainment contribution can be determined. Some controversy

still exists on the correct manner to relate the vertical

structure to the horizontal averaging method. The horizontal

averaging process enters the problem because of the "bumpy" nature

of the top of the boundary layer. It is not known what fraction

of cloud top radiative cooling is confined to the mixed layer.

This is presently an active research area.
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The inversion wind shear, which occurs if there is a jump in

the mean wind velocity (0), has not received much attention.

The importance of wind shear for a given situation can be

estimated by the following expression

We = Weo/(l-Ri-I) (19)

where Weo is the entrainment rate due to bouyancy effects and

Ri is the inversion Richardson number

Ri = gah Aev/(*IU 2) (20)

where g is the gravitational acceleration and ah is the thickness

of the entrainment region. If Ri>)l, then one can neglect

inversion wind shear effects. If Ri is on the order of one,

then it is likely that conventional entrainment parameterizations

will not be adequate.

26



V. Synoptic Scale Forcing

The role of synoptic scale air motion on fixed point evolu-

tions was expressed in Eq. 5. For example, typical atmospheric

horizontal temperature gradients are on the order of l*C for 100km.

At JI - 10 m/s, this could result in an advection temperature

change as large as 3.6"C in 12 hours. From the model application

point of view, one regards U and dJ/dZ as part of the model

initialization and rate equation structure (Eq. 1 and Eq. 10),

just as the AO data were regarded in the entrainment section. The

quantities W and 7H are not predicted by the model but are

parameters that must be specified in order to make valid

predictions. There are three methods that are potential sources

of this information; 1) synoptic scale numerical models, 2)

multiple station gradient measurements and 3) single station

techniques.

The mean vertical velocity, (subsidence) and the horizontal

wind gradients (divergence) are phrases that tend to be used

interchangeably because they are directly related through mass

conservation

V" (1 + R) - VH + dW/dZ = D + dWV/dZ = 0 (21)

Therefore, the mean vertical motion at height Z is simply

W(Z) V H - U dZ (22)

0
Often the divergence is assumed to be independent of height below

5km giving

W - -DZ (23)
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A. Synoptic Scale Numerical Models

Synoptic scale methods can be used to calculate W The glo-

bal pressure, temperature and geopotential fields theoretically

contain the information required to calcualte the horizontal wind

field, I, the subsidence, and the horizontal gradients of I and T.

Subsidence can be obtained from direct divergence calculation,

several different vorticity methods and thermodynamic methods. At

the moment, the global field estimates over the ocean are based so

heavily on data obtained over land that these methods are consi-

dered unreliable for subsidence and gradient calculations. When

over ocean data become routinely available with reasonable density

and vertical resolution, synoptic methods will be valuable for the

wind field, subsidence and temperature advection terms above the

boundary layer. There are presently no plans to develop this

resource for water vapor and aerosol advection.

B. Mesoscale gradients

Suppose we wish to consider the evolution of the boundary

layer over a 12 hour period. For a typical wind speed (10 m/s),

we are concerned with an area roughly 400km on a side. This is

really a more mesoscale area of interest. If we have available a

network of atmospheric measurements of all relevant phenomena from

the surface to several km altitude, distributed over the area of

interest, then the horizontal and vertical gradients and the

subsidence can be calculated. The classic method of obtaining the

divergence is to integrate the horizontal wind field components

perpendicular (Up) to a closed horizontal path

V • (1/A) f UPdt (24)
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where A is the area enclosed by the horizontal path. A minimum of

three separate locations (a triangle) is required.

A more general method, which can be applied to a horizontal

field of measurements of any variable, is to perform a linear

regression on all data points with horizontal coordinates X and Y

as variables and slope parameters Ox and $y, Z held constant

*(x,y) = a + ,xx +4 yY (25)

Since do/dx = Ox and do/dy = $y, then

U • VH = Ux~x + Uyy (26)

describes the horizontal advection of the quantity #.

If sufficient data are available (admittedly a big "if"),

the mesoscale field method appears to be ideal. However, in

addition to the great difficulty involved in operating a marine

data network, measurement inaccuracies and atmospheric variability

impose inherent limits on the accuracy of this method. For

example, a 2 m/s inaccuracy in wind speed (typical for

conventional rawindsondes) over a 200km triangle represents an

uncertainty in divergence of + 1 x 10- 5 s- 1. This could

cause an uncertainty in the height of the boundary layer of

approximately a factor of two within 24 hours. The problem of

atmospheric variability can be solved by averaging a number of

near simultaneous (within one hour) atmospheric profiles at each

location. For a one minute average, typical wind velocity

variability is about 15% of the mean with larger variability at

low wind speeds. Thus, wind velocity uncertainty due to

variability is, again, on the order of 2 m/s at typical mean wind

speed for a single sounding. It appears that the mesoscale mean
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field gradient methods must await the deployment of a more

accurate, greater horizontal density ocean measurement system.

C. Single Station Analysis

Since local single station data will almost certainly be

required for the model initialization, a meth. -hat allows

estimation of the synoptic terms from these data is ideal. In the

case of subsidence, the existing methods require examination of

successive radiosonde profiles. One obvious method (basically a

"bootstrap" method) is to simply adjust the value of q used in the

previous time period to obtain agreement of the model. This

assumes that the model entrainment rates and boundary layer height

advective terms are correct and the only remaining source of error

in the prediction of h is the subsidence velocity. One must also

assume that the average subsidence over the previous time period

is applicable to the current time period.

A second technique utilizes the heating of the upper atmos-

phere (Z>h) under subsidence conditions. At a given height, the

change of potential temperature, d8 , over the time interval, dt,

is related to the subsidence velocity by (Eq. 10b)

w = (U • Vie - de/dt)/re (27)

If advection is neglible and the divergence is independent of

height, then (using Eq. 23)

D = do/( r dtZ) (28)

Note that under these conditions the heating rate is proportional

to height, therefore that lapse rate, F, will not remain constant

in time. Thus, the change in lapse rate with time can be used to

estimate divergence
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D = ZnG( 9 / )/dt (29)

where reland r82are the lapse rates at times t2 and tl = t2 - t.

If accurate estimates of temperature advection are available,

subsidence can be accurately obtained using the thermodynamics

method (Eq. 27) with a time series of single station temperature

profiles. One technique is available to obtain single station

temperature advection, the thermal wind method. This method

utilizes the known change of the mean wind vector as a function of

height due to local gradients of the temperature field. The wind

vector change is described by the thermal wind equation

Uth = U1 - U0 = R/f * (k × v9) Zn(Po/Pl) (30)

where 1 and 0 designate different altitudes, P is the pressure, R

the gas constant, and f = 22 sin(latitude) is the coriolis

parameter. If we designate

7 6- d6/dx i + de/dy 7, then
H

de/dx = +f(Vly - Voy)/(R Zn(Po/Pl)) (31a)

de/dy = -f(V1 x - Vox)/(R Zn(Po/P1 )) (31b)

If we further designate U = (Ul +U O )/2, then the advection

heating is

•H = f(V2 v V2  -
2  V 2 2/(2R~n(Po/PI)) (32)

- HO = (ix + Voy- ly-001

This method does not work in the boundary layer where wind

gradients are also caused by the surface stress.

In principle, Eq. 32 and Eq. 27 can be used as single station

assessments of W and -U" VHe. However, since these are

difference methods (either between different soundings or

different levels within a sounding), they are subject to the same

inherent uncertainties due to measurement inaccuracy and normal
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atmospheric variability described in the section on the gradient

method. Fig. 6 shows a successful comparison of thermal wind and

gradient method estimations of temperature advection.
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Figure 6. Thermal advection heating rate, -U • 76, as a
function of altitude. The data are obtained from four
rawindsonde stations in the southern California coastal
region. The solid line is calculated using the thermal
wind equation (Eq.32) and the dashed line is from the
gradient method (Eq.26). The close agreement of the
two methods is not typical.
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VI. USER OUTPUT

The basic product of the integrated model is a prediction of

the time evolution of the mean profiles (Eq. 4) and the height of

the boundary layer. Also available are the various quantities

required to drive the model - surface fluxes, cloud thickness,

liquid water profiles, long and short wave radiation flux profiles

plus external specifications of advective and subsidence effects.

This information, which is the direct output of the model, has

numerous applications. Certain other relevant data, such as the

electromagnetic refractive-index profile, are easily calculated

from the model variables (in this case, the temperature and water

vapor profiles). There is a third class of information

(turbulence properties, for example) which require empirical

models for calculation from mixed layer mean profiles.

Typical Navy applications would include basic meteorology,

optical propagation, EM (radio and radar) propagation, atmospheric

dispersion, remote sensing and oceanographic forcing. In this

group, the EM propagation (IREPS), meteorological and oceanogra-

phic model structure is very well developed. The optical propaga-

tion, atmospheric dispersion and remote sensing applications are

not as completely developed (they probably lag the development of

the mixed layer evolutionary model at this stage). As an example,

the state-of-the-art for optical propagation is discussed in an

appended publication. Fig. 7 illustrates how the relevant physical

quantity (in this case the aerosol profile) must be cast in the

mixed layer model format to utilize the model predictions.
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The following listing summarizes some of the model outputs

available either directly (D), through simple calculations (C), or

empirical models (M).

1. Meteorology: stratus clouds (D), fog (D),

wind-temperature-dewpoint-RH (D), mixed layer height (D).

2. Optical propagation: Cn 2 (M), aerosol extinction (M),

cloud extinction (M), background radiance (C,M)

3. EM Propagation: M profiles (C), inversion duct strength (C),

evaporation duct height (M)

4. Atmospheric dispersion: mixed layer height (D), stability

class (C), wind variances (M)

5. Remote sensing: temperature-humidity profiles (D), aerosol

profiles (M), clouds (D)

6. Oceanographic: surface fluxes (D), radiation budget-

shortwave and longwave (D,M)
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Figure 7. Schematic representation of the atmospheric aerosol
distribtuion in the marine regime. The sea salt
(locally generated by whitecaps) aerosols (V) are
confined to the mixed layer while the global background
continental aerosols (Vc) are present above and below
the inversion.
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VII. VERIFICATION

Since we have not outlined a specific integrated type

boundary layer model, but have discussed in more general terms the

various components available, the question of model verification

becomes somewhat nebulous. It is possible to list examples from

the literature where specific models have been tested against

actual sets of data. Since people rarely publish negative

results, these papers generally can be described as "verification"

subject to certain caveats about the nature of the agreement. For

example, if the divergence is not available, one can find the

divergence value that gives the best agreement with the changes of

h over the period of interest and then compare the model

predictions of the well-mixed e and q value to the measurements.

This is more a test of the self consistency of the model than a

test of the model's predictive capability. If the synoptic scale

forcing terms are accurate however, the verification is an

examination of the integrated mixed layer assumption, and the

physical parameterizations used. In view of this, we have

arbitrarily designated a set of verification categories that are

listed in order from the ideal (1) to the less than ideal.

1) The model was intitialized with data available at the

start time and used to make a prediction which was

subsequently verified to some stated accuracy in the

atmosphere.

2) A complete data set was obtained that allowed an initial-

ization and specification of synoptic scale forcing. The

model was found to accurately reproduce the atmospheric

measurements.
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3) The model was verified on a set of data obtained in

laboratory experiments where divergence and advection

(presumably) are negligible or known.

4) The model was verified with an adjustable synoptic

scale forcing parameter.

5) The model was verified with an adjustable physical

parameterization.

A summary of some recently published papers is given in Table

I. The results might optimistically be termed "encouraging". Not

suprisingly, there is no Type 1 verification. Only one of the

Type 2 verifications was made for the marine atmospheric regime

and that particular example did not examine the time evolutions

but merely verified that the model gave an approximate "steady-

state" in agreement with the observations. Obviously a definitive

and comprehensive verification of these models has not been done.
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Figure 1. Block diagram of coupled large scale and boundary layer
models for the atmosphere and ocean.

Figure 2. Schematic representation of the two layer model
structure for clear sky conserved atmospheric
variables-water vapor mixing ratio, Q/P, and virtual
potential temperature, 8

v . The height of the
well-mixed layer is h capped by an inversion of
thickness ah.

Figure 3. Cloud droplet spectral parameters from mid-Atlantic
stratus (Ref.13). The dispersion is the ratio of the
standard deviation to the mean radius of the size
spectrum.

Figure 4. Net shortwave (darkened boxes) and longwave (clean
boxes) heating rates (flux divergences) measured from
an aircraft are shown on the left. The right side
depicts the total radiation heating rate profile. The
insert compares these measurements with two recent
models (Ref.13).

Figure 5. The entrainment rate, We, as a function of total
integrated cloud liquid water content, W (Eq. 16a).
The influence of solar radiation is shown for three
different solar zenith angles (Ref. 7). Note e = 90 °

correspond to zero solar flux.

Figure 6. Thermal advection heating rate, -U - 7e, as a
function of altitude. The data are obtained from four
rawindsonde stations in the southern California coastal
region. The solid line is calculated using the thermal
wind equation (Eq.32) and the dashed line is from the
gradient method (Eq.26). The close agreement of the
two methods is not typical.

Figure 7. Schematic representation of the atmospheric aerosol
distribtuion in the marine regime. The sea salt
(locally generated by whitecaps) aerosols (V,) are
confined to the mixed layer while the global background
continental aerosols (Vc) are present above and below
the inversion.

42



UbCLASSIFIE

Atmospneric Marine Boundary Layer Predictions for Weapons/System

Abstract

Weapons/properties of the lower atmosphere are very important in the opera-
tion of many systems. Of particular importance is the affect on electromagnetic
propagation for the full range from optical to radio wavelengths. Small scale
index of refraction fluctuations and aerosols severely affect optical propaga-
tion. Large scale changes in the index of refraction cause bending of RF and
microwaves, leading to ducting, fading, and a host of other phenomena. Experi-
mental assessment of atmospheric properties can cnly be done occasionally and on
a widely separated basis. Thus, it is critical for operational planning to have
available a model which can extend routine atmospheric measurements (radiosonde)
in both time and space. At NPS extensive work is underway on modeling the marine
atmospheric boundary layer. We sketch here the basics of the model and describe
how it can be applied to a wide range of military problems. We illustrate the
features being described and the present prediction capabilities.
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UN CLASSIFIED

1.0 Introduction

Modern warfare has become critically dependent on the entire elec-
tromagnetic spectrum for command and control communications, for weapon
guidance, for electronic warfare support and for countermeasures. Tacti-
cally essential systems are highly affected by the environment even when
conditions are not severe in the historical sense. Enhancement or degra-
dation of EM/EO system operational performances has become a primary con-
cern of task force commanders. As such, the deployment of resources and
the modification of tactics based on environmental factors in EM/E0 pro-
pagation will, to a very large extent, determine the effectiveness of
sensor, weapon and communication systems.

Environmental effects on EM/EO system performance can be grouped in
the general categories of refraction (EM), wave front distortion (EO),
extinction (EO), and particulate dispersion (FIA/EO). Environmental fac-
tors contributing to these effects are the vertical gradients of tempera-
ture and humidity for refraction, small scal. inhomogeneities (turbu-
lence) of the index of refraction for optical wave front distortion, con-
centrations of water vapor and aerosols for extinction (absorption and
scattering) and turbulent transport for dispersion. All of these factors
are multi-variable in terms of the dependence on routinely measured and
predicted meteorological variables; pressure, wind, temperature and mois-
ture. The only factors for which accuracies of existing and foreseen
measurements approach direct descriptions of the effect is that of gra-
dients of index of refraction and absorption. Turbulence and aerosol de-
scriptions will have to be obtained by indirect methods due to measure-
ment complexities which preclude direct measurement on operational ships.

We are interested in describing all these factors for the atmo-
spheric region extending from the surface to .5 - 2 km above the surface,
the marine atmospheric boundary layer (MABL). The MABL is cooler and
more moist than the overlying air and is capped by a layer (inversion),
50-100 meters thick, in which temperature increases and humidity de-
creases with height. Critical values of the index of refraction gradi-
ents leading to EI propagation anomalies may exist within the shallow
capping inversion because of the humidity and temperature gradients. The
entire affected region (duct) extends below the inversion and determining
its lower boundary is essential. High turbulence occurs in the inversion
as well as in the surface layer and can cause degradation of horizontal
and slant path optical propagation. Inversion turbulence intensities are
usually 1 to 2 orders of magnitude greater than those below and 2 to 3
orders of magnitude greater than those above. Tactically significant ex-
tinction of infrared energy is due to water vapor absorption and marine
aerosol scattering in the presence of high humidity and, thus, is usually
restricted to the MABL.
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All of the above features depend critically on the detailed vertical
structure of the atmosphere; so regional climatologies are not useful for
operational predictions. This is because the significant vertical struc-
tures are lost in averaging, and also because most historical measure-
ments do not relate to specific EM/EO requirements. Furthermore, the
strengths of the gradients and their levels, and hence, the affected re-
gions cannot be explained on the basis of large scale atmospheric flows
since they are controlled by near surface dynamic processes as well as
larger scale features.

We believe a 'gap' has existed in past efforts to characterize tact-
ical environmental conditions. The gap was between two extreme approaches
of relating conditions to 1) near surface observations, and 2) to larger
scale predicted synoptic patterns. Clearly, to assess the above features,
local measurement is desirable. Measurements (radiosondes) are made in-
frequently and, as time progresses, the initial point measurement becomes
less applicable and a predictive scheme is needed. One must consider a
transition to climatology, large scale numerical analysis predictions, or
dynamic models based on the initial soundings which are available at the
operational location. Climatology has already been addressed and discoun-
ted. Ruggles (1975) has examined the capabilities of large scale numeri-
cal procedures at remote facilities and argued convincingly that they are
not sufficient.

Needed are characterizations of coupled local oceanic and atmo-
spheric mixed layer features for time scales from 12 to 18 hours and for
spatial scales from 50 to 300 km. Significant changes occur in both mixed
layers over these temporal and spatial scales. Predicting these changes
is now possible using available measurements and reasonable physical
models which ha,,e been recently formulated.

This paper will describe results from observational and model evalu-
ation/reformulation efforts which provide evidence that tactically rele-
vant forecasts are possible over the required time and space scales. The
MABL will be considered but, as will be seen, the MABL model must eventu-
ally be coupled with an Ocean Boundary Layer (OBL) model to adequately
describe the changes in both layers.

The long term objective of work in these areas is to make reliable
6-18 hour forecasts of properties within the MABL and CBL. The near term
objectives are I) to verify and reformulate existing models for the re-
sponsible physical processes and 2) to develop measurement procedures
which are suitable for routine observations from a single ship or air-
craft. It will be necessary for the finalized model to predict such
properties as the height of the inversion, the strength of the gradients
and fluxes at the inversion and at the surface, and the values of well
mixed properties in the region between the surface and the inversion.
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2.0 Background

This section will provide a general outline of the required descrip-
tions and the models which can be used to predict them. The descriptions
and models are delineated in Figure 1, where the descriptions are en-
closed by ellipses and models and measurements are enclosed by rect-
angles. The meteorological descriptions and models are enclosed by a
dashed outline. Tactical descriptions (forecasts) to which the improved
understandings would apply appear on the extreme right hand side. Single
station assessment constraints associated with the local atmospheric and
ocean models are timely and compatible with the concept of the Tactical
Environmental Support System (TESS) as recently described.by NEPRF scien-
tific personnel (NEPRF METRO Report, July 1981).

As stated, we will only consider the local atmospheric mixed layer
model and associated descriptions. The local oceanic descriptions would
be made by an oceanic mixed-layer model (e.g., Garwood, 1977) and the re-
gional descriptions would be made by a three dimensional atmospheric
(e.g. NORAPS) and a regional oceanic (e.g. TOPS) numerical prediction
model. The ocean mixed layer model and the regional numerical prediction
schemes are objectives of other Navy sponsored basic and exploratory
research efforts.

2.1 Meteorological descriptions and models

From a local assessment perspective, let us consider an idealization
of the oceanic-atmospheric system. The sea-air interface is bordered by
oceanic and atmospheric turbulent mixed layers which effectively insulate
the bulk ocean and atmospheric regions. The primary sources of the tur-
bulence within the layers are the velocity (current) and buoyancy (den-
sity) gradients at the interface. Even under conditions where the water
is slightly cooler than the air, buoyancy forced velocity fluctuations
within the layer can be quite large and mix the entire MABL from the sur-
face to the inversion. The large vertical mixing yields constant (well-
mixed) wind, temperature and humidity profiles above the surface. At the
top of the atmospheric mixed layer there is a thin transition region (in-
version). Examples of observed well-mixed profiles and the inversion are
shown in Figure 2(a).

The atmospheric mixed layer interacts with the. free atmosphere at
the inversion by means of turbulence forced entrairment. Entrainent
brings dry, warm air into the mixed layer and also increases the surface
winds if there are higher winds aloft. Stratus clouds would f&rm within
the layer if entrainment caused the moist mixed layer to extend above the
condensation level.

Physical processes within the mixed layer are also controlled or
forced (over a time scale~of .24-36 hours) by the large scale, non-sta-
tionary, synoptic flows. Synoptic scale mean vertical motion and advec-
tion will have tb be prescribed or predicted over the forecast period.
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The previously inferred well-mixed nature of the convective MABL has
implications for the vertical distributions of mean values and the verti-
cal fluxes (transports) of wind, temperature and humidity. One implica-
tion already illustrated is that properties which are conserved during
mixing can be treated as being constant with height within the MABL.
These parameters are the specific humidity and potential temperature for
a clear MABL and equivalent potential temperature and total (vapor plus
liquid) specific humidity for a cloudy MABL. A second implication is
that vertical fluxes of the well-mixed parameters decrease linearly with
height.

These implications enable predictions of MABL evolution to be based
solely on fluxes at the upper (inversion) and lower (surface) boundaries
and the large scale subsidence and advection. They form the basis of
recent model formulations by Deardorff (1976) and Stage and Businger
(1981). Fluxes of both boundaries are due to buoyant and mechanical
generated turbulence for the clear case with the addition of cloud top
radiative fluxes for the cloudy case. The linear height variations of
the fluxes allow one to relate buoyant fluxes at the inversion to the
more readily estimated surface fluxes. Also, cloud top radiative fluxes
can be estimated on the basis of general cloud features. Approaches exist
for estimating synoptic scale forcing from single station measurements
but further efforts are required to achieve the accuracies required in
MABL predictions.

In general, existing models are quite good for the clear sky MABL
and fair to good for the cloudy MABL. Considerable effort is now being
directed to improving the models for the cloudy MABL. The existence of
cloud layers in the MABL is very sensitive to both th1e sea surface tem-
perature and the entrainment rate and, in turn, clouds have a profound
effect on the short and long wave radiation budget at the surface.
Fairall et al (1982) provide our position discussion on the approach and
the status of abilities to predict the evolution of the MABL.

2.2 Tactical descriptions

Figures 2b-d illustrate tactical descriptions discussed in the In-
troduction and appearing in the right hand column of Figure 1. Meteoro-
logical processes and features relevant to these tactical descriptions
are those that were discussed above (Figure 2a and column 4 of Figure 1).
Several meteorological factors affect each tactical description as indi-
cated by the numbers, 1-4, in Figure 1. A few of the significant proper-
ties and values in the tactical descriptions are described in the
following paragraphs.

The M profile in Figure 2b describes the refracted EM ray radius of
curvature, relative to the earth's radius of curvature. If M decreases
with height, a trapping layer is formed because the EM ray will bend
downward relative to the earth. This causes the formation of a duct. The
upper boundary of the duct is at the M minimum; the lower boundary is at
the height where this same value of M occurs below the trapping layer, as
shown in Figure 2b. The M profile is determined by pressure, temperature
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and humidity profiles, so values of well mixed temperature and humidity
determine the lower boundary of the duct. An increase of mixed layer M
value with time could cause an elevated to become a surface based duct as
shown in Figure 2b. This could occur if the mixed layer became warmer
and drier due to entrainment of overlying air. (Warming and drying of
the mixed layer by entrainment would also increase the height of the
evaporation duct, a ducting layer immediately adjacent to the surface.)
Examples of extended ranges and holes occurring with a duct appear in
Figure 3 (Hitney, 1979).

The C profile in Figure 2c shows the vertical variation of

turbulence which would affect optical wave front distortion. *We see that

CN2 is largest near the surface and in the inversion. Values in these

regions are 1-2 orders of magnitude larger than those in the mixed layer

and above the inversion. C 2 values near - 1 4 m- 2/ 3 are representative

for these two regions. The importance of this value is illustrated in

Figure 4 with a simulated image of a remotely piloted vehicle as viewed
2 , 1, -14 -2/through CN regions of 0 (no turbulence), 10- 15, and 10 m (Kearns

and Walter, 1978).

The extinction coefficient, 8, profile is shown in Figure 2d. 0 is
inversely proportional to the range of IR systems and depends on the
absolute humidity and the aerosol size distribution. Aerosol size dis-
tributions depend on the generation rate of sea salt particles and on the
relative humidity through the growth factor. Therefore, IR extinction is
very dependent on the entrainment of relatively clean, dry and warm air
from above the inversion and on the surface wind generation of the sea
salt particles. As illustrated, the extinction coefficient is large
within the mixed layer and increases with height due to relative humidity
increases. The increase with height is important in slant path range
considerations.

3.0 MABL observations and predictions

A recently obtained data set will be used to demonstrate the nature
of changes in the MABL and their prediction. The demonstration will
show:

a) the status of available data sets,

b) that the assessment of relative roles of dynamic processes in
the YABL can be based on a relatively simple physical model
hich includes specifiable inputs, and
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c) that, at the present time, we have only initial evidence that
changes can be predicted. The rigorous specification or
description will require further interpretive efforts and,
perhaps, improved formulation of the separate models.

3.1 MIBL observations

The data were obtained during the Cooperative Experiment on West
Coast Oceanography and Meteorology (CENCCM-78) conducted west of San
Nicolas Island, CA during May of 1978. Observations of the oceanic and
atmospheric mixed layers were made from the R/V ACANIA; radiosonde obser-
vations were also made at surrounding shore stations. The data to be
shown are from a 48-hour period, 5/19/1200 to 5/21/1200 PST. The R/V
ACANIA was cruising slowly (2-3 knots) into the wind and returned to an
initial point approximately every 12 hours. The general location of the
R/V ACANIA during the 5/19 to 5/22 periods and locations of surrounding
shoreline radiosonde sites appear in Figure 5.

The period was one of steady onshore flow caused by the combined ef-
fects of intensification of the Eastern Pacific High and the persistence
of the Mexican thermal low. The only apparent change in synoptic scale
forcing was an increase in the offshore pressure gradient. Advection in
the atmosphere was moderate. However, MABL evolutibns were primarily
determined by subsidence, surface fluxes, and entraiment at the
inversion. Satellite imagery showed increasing uniform stratus coverage
(thin to heavy) during the period with a cellular (broken) coverage
occurring late on the 21st.

Acoustic sounder returns, mean surface layer parameters, and sea
surface temperature during the 19-21 May period are shown in. Figures
6b-d, all measured from the R/V ACANIA. Potential temperature composite
profiles from shipboard and shore station radiosonde and temperature pro-
files from ship deployed XBT's appear in Figures 6a and 6e, respectively.
Although these descriptions of MABL and CBL changes were obtained from an
instrumented research vessel, all can be obtained from operational ships.
This includes the acoustic sounder record.

Changes of atmospheric features which would have been tactically
significant in view of the time scale and their magnitudes were:

a) The MABL depth increased from 250 m to 750 m over the 48 hour
period. The changes occurred in relatively short intervals,
from 20/00 to 20/04, and from 21/00 to 21/08. The ABL depth
remained near constant during the intervening 12 to 18 hour
periods.

b) The surface layer temperature increase from 20/00 to 20/15 is
indicative of entrainment of overlying warm air. Entrainment
%vuld also dilute the mixed layer and decrease the relative
humidity. The entrainment was presumably also a factor in the
wind speed increase over the same period, which caused the warm
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shallow ocean layer to be destroyed, lowering the sea surface
temperature after 20/1800 (Figure 6d).

In conjunction with changes in MABL structures and parameter values
depicted in Figure 6, changes occurred which are important to operational
systems. Some of these changes can be determined directly from parameters
measured in this scientific observational effort. M profile and cloud
base heights (condensation levels) can be calculated from the measured
humidity and temperature profiles. Surface layer extinction coefficients
have to be determined from the measured humidity and aerosol size distri-
butions. Our approach for determining extinction coefficients from aer2-
sol data has been described by Schacher et al (1981). Surface .layer
values and evaporation duct heights can be determined with considerable
certainty from measured surface layer wind, temperature, humidity and
surface temperature values using expressions described by DavidsQn et al
(1981) and Fairall et al (1978), respectively. Extinction and C z pro-
files have to be based on more recent and, hence, less substantiated ex-
pressions such as those by Wells et al (1977) and Wyngaard and Lemone
(1980).

Results from these determinations appear in Figures 7 and 8 along
with the composite potential temperature, a, and water vapor mixing
ratio, q, profiles (Figure 7a) and the inversion helght (Figure 8a, rect-
angles). The observed results are the solid lines for profiles (Figure
7) and the X's for observed (Figure 8). The observed inversion heights
(Figure 8a) (the rectangles) are shown for all stations used in the
composites. The observed results indicate that for the observation
period:

a) The EM duct associated with the inversion gradients.evolved from
being surface based to being elevated (Figure 7b) and the eva-
poration duct height ranged from below 5 m to above 8 m (Figure
8b),

b) Optical turbulence, CN2, in the surface layer varied from 10-15

to 10l4 m 2 / 3 over the period (Figure 8c) and values in the

inversion increased from 10-16 to 10- 15 m- 2/3 (Figure 8c),

c) Surface layer aerosol extinction in the 8-12 Lm IR region in-
creased during the first 6 hours (5/19 1200-1800) because the
relative humidity increased. It decreased during the last 18
hours (5/20/1800 to 5/21/1200) because of relative humidity and
wind decreases (Figure 8d),

d) stratus cloud persisted through the period. The base lifted
from about 100 m at 5/19/1800 to 600 meters at 5/21/1200. This
is evident in the extinction profile (Figure 7d).
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3.2 Model predictions

During the past five years, we performed investigations on surface
layer and mixed-layer scaling of small scale turbulence and aerosol pro-
perties (Davidson et al, 1978; Fairall et al, 1979; Schacher et al,
1981). The investigations led to the application of a time dependent
MABL model based on entrainment energetics and on cloud radiative trans-
fers suggested by Deardorff (1976). The model requires as input an ini-
tial atmospheric sounding (radiosonde), the mean winds at a level within
the surface layer (10-30 meters) and the surface temperature. Well-mixed
temperature and humidity are predicted so the surface wind and wind shear
at an inversion are the only local atmospheric variables which have to be
prescribed. The larger scale subsidence and advection must also be
prescribed for the forecast period.

The steps in the prediction computation are shown in Figure 9, where
it is noted that procedures are the same for clear and cloudy cases ex-
cept for entrainment computation and estimating cloud top cooling.
Fairall et al (1982) include comprehensive discussions of how responsible
physical processes are treated in the model and how available data can be
used to estimate the processes. Because of the simplified physical model
the computations do not require nuerical integrations on a vertical grid
so the computer storage requirements can be satisfied by available ship-
board microcomputers. In fact, we &re examining the use of a hand-held
calculator for the procedures.

Predictions of MABL changes were made with the simplified model for
the 48 hour period (5/19/1200 to 5/21/1200) corresponding to observed re-
sults in Figures 6a-e. The predictions were made for two separate 24 hour
periods starting at 19/1200 and at 20/1200. initial profiles for the
19/1200 start time was that obtained at San Clemente Island (SCI in
Figure 5) at approximately 1000. Initial profiles for the 20/1200 start
time were averages of the composites at 20/0500 and 20/1700. The sea sur-
face temperatures were those at each start time as shown in Figure 6d and
were 15 and 14. 5 C. The surface wind observed1during the forecast peiod
was specified to increase linearly from 5 m s 1at 19/1200 to 10 m s at
20/2100 and then to decrease linearly t, 7 m s at 21/1200.

Larger scale synoptic forcing (subsidence and thermal advection),
stated previously as requiring more study if it is to be satisfactorily
estimated from single station assessments, was estimated from temperature
changes above the inversion (subsidence) and from the thermal wind
(thermal advection). It was set to zero during the first period. Subsi-
dence for the second period, starting at 20/1200, was adjusted on the
basis of that value required for agreement between predicted and observed
mixed layer depths during the first period. Hence, the model was also
used to estimate the "most probable" synoptic scale subsidence.

The predicbions are illustrated in Figures 7 and 8 along with the
mobserved" results. The predictions are the dashed lines for both the
profiles (Figure 7) and inversion height and surface layer, 10 m, values
(Figure 8). The agreement near 20/1200 in Figure 8 occurs because the
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model was reinitialized at that point. Significant outcomes from compar-
isons of observed and predicted results are

a) The mixe layer depth (inversion height, Figure 8a) was predic-
ted quite well. This increase during the later part of both
periods was caused by cloud top entrainment because the predic-
ted surface layer stability became stable and, hence, there
existed no surface buoyancy flux forcing.

b) The cloud cover was accurately predicted to persist throughout
the first period and for the first 15 hours of the second
period, as indicated by the condensation level being below the
inversion in Figure 8a. However, the predicted cloud thickness
was less than that which actually occurred. As indicated in
preceding discussions, the cloud cover was observed to break up
in the 21st and the prediction after 21/0600 agrees with that.

c) The well mixed temperature and humidity and the jump predictions
(Figure 7a) are reasonable except for the 20/0500 comparison
time. The predicted well mixed temperature was too warm (1-2 C)
at all other comparison times. This led to the surface layer
becoming stable when in actuality it remained unstable through-
out both periods, surface temperature higher than 10 m tempera-
ture. We believe the cooling associated with the clouds was not
sufficient. It will be seen that the surface layer was stable
(too warm) during the night hours.

d) The predicted M profiiles (Figure 7b) were very accurate in
terms of the surface based duct evolving to an elevated duct and
the lower boundary. It is interesting that even when the pre-
dicted well mixed temperature and hmidity were much too high
(20/0500) the M. profile verified. This occurred because their
respective affects on M compensated.

e) The predicted CN2 profiles (Figure 7c) gave good values for the

inversion region and reasonable values for the mixed layer, ex-

cept for 20/0500. It is noted that values above the inversion

were set to 10- 18 for both observed and predicted profiles.

Factors of 3 agreement are considered reasonable for CN2 . it is

noted that inversion region values should be based on the con-

vective mixing velocity, W, (ygaard and Lemone, 1980). When a

stable surface layer existed (20/0500) the friction velocity,
U,, was used instead of W,.

A-11



UOCLASSIFIED

f) The total extinction at 8-12 um prediction (Figure 7d) was quite
good outside of cloud layers. Again, values above the inversion
were set to the sane value for both observed and predicted pro-
files. The sensitivity of aerosol size to relative humidity
changes when the relative humidity is above 90% is what leads
this comparison to give seemingly poor results. Hence, the good
agreement outside of clouds is encouraging.

g) The evaporation duct height (Z,) prediction (Figure 8b) is not
very good. The disagreement occurs because the predicted sur-
face was less unstable (more stable) than the observed. Z, in-
creases almost linearly with increasing stability. The very
large predicted Z, values at the end of the second period oc-
curred because it was stable and because the predicted well
mixed humidity decreased, Figure 7a.

h) The predicted surfae layer 2 values (Figure 8c) were always
less than those observed because of the previously mentioned in-
accurate surface layer stability. The minima at 19/2300, 20/1800
and 20/0500 correspond to the surface layer going from unstable
to stable, unstable to stable and stable to unstable,
respectively.

1) The predicted surface layer aerosol scattering extinction for
8-12 im (Figure 8d) was very good during the second period. "he
observed and predicted decrease from 20/1800 to 21/1200 was
associated with due tc, a lecrease in relative humidity and wind
speed. The wind speed used for the prediction was, of course,
prescribed on the basis of observed results. Hence, the role of
relative humidity on the extinction is that being evaluated.

4.0 Conclusions

The importance of and an approach for predicting evolutions of the
marine atmospheric boundary layer have been described. Any change in the
mixed layer depth or well-mixed properties can lead to significant
changes in the weapons/systems tactical environment. These include EM
duct regions, optical turbulence and optical extinction, both within and
at the boundaries of the inversion capped mixed layer.

Although the tactical descriptions are multi-variable and require
detailed vertical descriptions, a simplified model based on routinely
observed data appears to be quite useful for predicting changes over
12-18 hours. For the cloud topped period considered, the refraction,
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optical turbulence and optical extinction profiles were predicted quite
well. Cloud coverge changes were also predicted quite well. The primary
differences between observed and prediction results were for the surface
layer, the evaporation duct height and the optical turbulence. The
differences were significant in terms of tactical effects. The predicted
evaporation duct was much too high and the predicted optical turbulence
was much too low. The reason in both cases was that the predicted air
temperature was too high (2-3 C) uhich resulted in a neutral to stable
condition. We believe the cause for this was the improper specification
of cloud cooling within the mixed layer.
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Meteorological models for optical properties in the marine atmospheric boundary layer
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Abstract

Observational experiments on turbulent intensities and aerosol distributions in the
marine boundary layer (MBL) have been performed over several years. Observations have been
made with ship-mounted and airplane-mounted sensors. Objectives have been to relate optical
properties to meteorological descriptions which utilize scaling laws for the MBL. The
approach has been to incorporate in the descriptions the surface fluxes of momentum, heat.
and moisture, the processes at the inversion and the profiles within the intervening convec-
tively mixed layer. We have found that optical turbulence parameters (CM2 and 10) can
be readily estimated using measured mean values of wind, temperature, and humidity with
recent bulk formulae to derive the surface fluxes. These estimates appear to be more reli-
able than values obtained from direct (but difficult to perform).turbulence measurements.
The model for obtaining the estimates was evaluated on the basis of optical CN2 values
with good agreement. Good comparisons have been observed between extinction values obtained
from transmission measurements and those obtained from calculations on measured aerosol
distributions. Existing empirical formulations which related the latter to wind speed and
relative humidity appear to be inadequate except for climatological purposes. This is
because other influences on equilibrium aerosol distribution are not included.
Reformulation of these expressions is being performed to include the height of the inversion
(mixing volume) and surface fluxes (aerosol generation and transport).

Introduction

Three atmospheric processes are primarily responsible for the degradation of the trans-
mission of optical images and electro-optical energy: aerosol extinction, molecular extinc-
tion, and turbulent distortion (scintillation and beam wander). Optical energy propagating
through the atmosphere is scattered and absorbed by aerosols and molecules and optical wave
fronts are deflected and distorted by turbulent fluctuations in the refractive index.
Tested physical models of these atmospheric effects and approaches to estimate them from
routine meteorological data are required for applications of optical and electro-optical
systems. 4aval Postgraduate School (NPS) investigators have participated in field experi-
ments designed to improve and verify such models and approaches for the overwater regime.
These have been performed for U. S. Navy research programs over the past seven years.

The two atmospheric optical parameters of primary interest are the total extinction coef-
ficient and the refractive-index structure function parameter, CN2 . The total extinc-
tion coefficient (0 + a) parameterizes the loss of optical energy as it is scattered out of
the beam or absorbed by molecular and particulate constituents of the atmosphere. Thus, it
has four components: molecula, scattering and absorption (B = $a + Bs) and aerosol
scattering and absorption (a - ma * ) . The refactive-index structure function parameter
parameterizes the intensity of refactive-index spatial inhomogeneities which distort and
tilt image wave fronts. Both of these parameters can be related to meteorological
parameters: 1) CN 2 to the intensity of small scale turbulent fluctuations and 2) total
extinction to the concentration of certain gases and to the size distribution of aerosols.

One part of the experiments dealt with the compatibility of optical and meteorological
propagation theories. For this, direct optical measurements of extinction and scintillation
across an overwater path were compared to values calculated from aerosol and turbulence data
obtained at the midpoint of the optical path from an instrumented research vessel. Once
these relationships are validated, optical properties can be deduced from detailed meteoro-
logical measurements and models.

A second part of the experiments involved attempts to apply existing models for the
marine atmospheric surface layer and mixed layer to describe the optically relevant turbu-
lent and aerosol properties. The surface layer is considered to be the region extending
from the air-sea interface to heights of 40-50 meters. Its mean and turbulent properties
are closely related to surface fluxes of momentum, temperature and moisture, and hence, the
air-surface (bulk) differences of mean properties. The fluxes themselves are often assumed
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to be independent of height within the surface layer. The mixed layer extends from the top
of the surface layer to the base of the capping inversion. Properties of the mixed layer
are determined by both the underlying surface fluxes and entrainment at the inversion. Fig.
I illustrates the meteorological signature characteristic of the marine boundary layer
(MBL). A well-mixed property (in this case, virtual potential temperature and water vapor
mixing ratio) has a gradient in the surface layer, is constant in the mixed layer (up to
height, h) changes abruptly in the interfacial layer (thickness, h) and acquires a fairly
constant gradient (lapse rate, r) in the free troposphere. This structure prevails over the
open ocean a majority of the time, the most common exception being during periods of frontal
passage. This structure is due to turbulent processes driven by the air-sea interaction.
These same processes lend themselves to scaling law parameterizations that allow the
development of physical models of turbulence and aerosol profiles in the MBL.

Comparison of optical and meteorological values for C_2

and aerosol scattering extinction coefficient

(C C 2 for optical wavelengths is related to the temperature (CT2 ). water vapor

a21 and temperature-water vapor (CTQ) structure function parameters by1

Ct2 - (79 x 10-6 P/T2 )2 (CT2 + 0.113 CTQ + 3.2 x 10-
3 C0

2 ) (i)

where P is the pressure in mb, and T the absolute temperature.

The separate components of total extinction (0 + a) can be calculated from meteorological
data. Molecular extinction (0) can be obtained using existing models, such as the LOWTRAN
model developed by the Air Force Geophysics Laboratory2 , with observed temperatures and
water vapor concentrations. Aerosol total extinction (a) can be calculated from the aerosol
spectral density, N(r). as

a = firr2 E(n.A) N(r) dr (2)

where r is the particle radius. E(n,X) the total scatteringefficiency 't wavelength, X, and
refractive-index, n.

A series of field experiments to establish the credibility of Eq. 1 and Eq. 2 for
practical determination of optical properties culminated in the MAGAT experiment in
Monterey. Since the results have been reported for CN2 by Davidson et a13 and for
aerosols by Schacher et a14, a brief summary only will be presented here.

The optical measurements were made over a 13 klm overwater path and are described by
Crittenden et al5 . The meteorological measurements were made from the R/V Acania
(operated by the Department of Oceanography of NPS) which was stationed near the midpoint of
the optical path. The R/V Acania was equipped with multi-level measurement systems to
measure mean and turbulent wind, temperature and humidity and aerosol size distribution
(.09 Um to 14 Um radius). Descriptions of the measurement and analyses systems and
procedures are given by Schacher et a14 . Two measurements requiring further description
for these camparisons are those of the temperature 

structure function parameter, CT 3,

and of the aerosol size distributions.

Meteorological values for CN2 in this comparison were determined primarily from
CT2 measurements with minor (less than 151) adjustments for the water vapor
contributions, CTO and C0

2 . The CT2 measurements were made with two resistance
wires. 2.5 um platinum sensors, separated a distance of 30 cm in the crosswind direction.
CT2 values were obtained from RMS values of the sensed temperature differences.

The aerosol spectra were measured with optical particle counters made by Particle
Measurement Systems (PMS) of Boulder. Colorado. The total system consisted of two probes,
the classical scattering (CSAS) and the active scattering (ASAS), controlled by a DAS-32
with computer interfacing. This system measures aerosols in 90 size channels from 0.09 Um
to 14.0 Um radius. The 4(r) spectra were determined for half-hour periods. Each spectrum
was fit in LOG(W(r)), LOG (r) space with a seventh order polynomial for 0.09 um < r < 7 Um,
with a linear fit for r • 7Um. The extinction was then calculated using these fits for
0.03 um < r < 30 um.

Comparisons of optically measured CN2 with meteorologically measured CN
2

(calculated from CT
2 measurement with correction for probable water vapor contributions)

are shown in Figure 2. The salt loading effect increases measured CT2 values for
general conditions during these measurements. The extinction domparisons are shown in
Fig. 3.
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Turbulence modeling

At any given point in the atmosphere, the turbulence properties are determined by the
physical processes dominating that region of space. Identifying the important physical
parameters and neglecting the unimportant forms the basis of the scaling law approach. As
an extreme example, clearly the sea surface temperature has little influence on the
turbulence at an altitude of 30 km. Therefore, the MBL is loosely partitioned into regions
in which certain scaling regimes apply; these regions are summarized in Table 1. (symbols
will be defined in the text)'.

Table I. CS2 scaling regions of the MBL
region helght relevant parameters scaling parameters model

surface ZC0.lh surface fluxes u.,T,,Q.,Z/L bulk
free convection O.lhcZ'0.Sh surface fluxes, h W.,0e.M.,Z/h mixed layer
transition O.Sh<Z<h ?
interfacial hcz'(l+a)h Jumps, fluxes, h W,,We,a entrainment
free troposhere z>(l+a)h ?

Surface layer
Monin-Obuhkov scaling (MOS). Near the surface, the height above the surface, Z, can be

normalized by the .onin-Obuhkov stability length, L. We can then represent the relevant
micrometeorological properties in terms of height (Z), scaling parameters (T,, Q. and u*)
and dimensionless functions of C - Z/L,

CT2  T. 2 Z-2/3 f(C) (3a)
C%2  0, 2 Z- 2 /3 Af(1) (3b)
CTO rTQ TQeZ'2/3 Al/2 f( ) (3c)

where T, and 0. are the temperature and humidity scaling parameters, f() is a
dimensionless function7, rTO is the temperature-humidity correction parameter (about
0.8) and A is a constant (about 0.6). The scaling length, L, is given by

2L - (T/Kg) u*/(T, + 0.61 TQ./0) (4)

where u* is the friction velocity, K is Von Karman's constant (0.35). g is the
acceleration of gravity and P is the density of air. Note that the scaling parameters are
related to the surface fluxes of momentum (T - Pu. 2 ), temperature (00 - -u*T.) and
water vapor (M. a -uO*).

Bulk model. Using Eq. 1 and Eq. 3 one can calculate CM2 at some height Z in the
surface layer, provided values of T., Q* and L are known. The most straightforward
method of obtaining these variables is to measure the surface fluxes of momentum, heat and
water vapor. The difficulty of direct flux measurements led to the development of a method
that utilizes bulk meteorolocical quantities (wind speed, u, temperature, T, and water vapor
density, 0). In this case, the scaling parameter for X(X - u,T,O) is obtained from the
difference In X from the sea surface (X,) to some reference height (usually 10 m) in the
atmosphert.

X* - cl /2 (Xlo - Xs ) (5)

where cx is the drag coeficient for X (typically, cx - 1.3 x 10- 3 over th ocean).
Further details on use of the bulk method can be found in Davidson et al o.

The verification of the bulk method for CT2 and Eq. 3a is shown 8 in Fig. 4a while
the corresponding verification for C0

2 and Eq. 3b is shown9 in Fig. 4b. Following
this work, the MAGAT experiment was performed to verify the bulk predictions against direct
optical (scintillation) measurements 3 (Fig. 5).

In this comparison all but three of 26 pairs of values are within a factor of two of
perfect agreement. The mean percent error, taking the optical values to be correct, is 33%
which is extremely good agreement. This agreement is better than that obtained in the
comparison with CN2 derived from CT2 measurements. Such a result is partially
expected because of inherent measurement errors in the latter.

Results of these comparisons and results of comparison of bulk and turbulence derived
parameters in the above referenced papers clearly demonstrates that surface layer optical
turbulence, CN2 , is very satisfactorily described by existing bulk formulae and scaling
expressions. In fact, over the ocean CN2 can be more accurately determined from bulk
model calucations than from the more difficult direct measurements of small scale
temperature and humidity fluctuations.
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Mixed Layer.
Free Convection Layer. In the lower half of the mixed layer free convection scaling

applies 10, 11: the scaling parameters are (where Oov - 0 
+ O.61TMo/p)

* = Qo/W* (6a)

Me - Me/W, (6b)

We - (gQvh/T)1/3  (6c)

Note that some authors use the height of the inversion, Zi w (1 + Q/2)h, rather than
the height of the well-mixed layer, h. Normally, Zi is about 101 greater than h.

In this regime, the structure functions are calculated using 12

CT2 - 9*2 h -2/3 (Z/h)-4/3 B (7a)

C0
2 - M*2h-2/3 (Z/h)-4/3AB (7b)

CTO - rTQ M.*eh-2/3 (Z/h)-4/3 AI/28 (7c)

As has been pointed out by Panofsky 13, Eq. 7 is an extension of Eq. 3 for IZ/I >>1.
Thus, the matching of the surface layer-free convection layer scaling requires that B = 2.7,
which has been verified by measurements 12.

Transition Layer. For Z ^ 0.5h, Eq. 7 begins to breakdown. The actual height limit of
the validity of free convective scaling depends on conditions, most notably the value of h.
Basically, the greater h, the larger the value of Z/h that Eq. 7 can be used. The behavior
of CT2 in the transition layer has been examined using an additional dimensionless
function 14, 15 G(Z/h)

CT2 . e.2 h-2/3 (Z/h)-4/3S G(Z/h) (8)

Three exanmpl.-s of G(Z/h) are shown in Fig. 6, where it is clear that G(Z/h) is not a
universal function. Since turbulence in the transition layer is influenced by the transport
of turbulence from the interfacial layer, it is likely that scaling in the region will
require "matching" with the entrainment scaling.

Interfacial Layer. Turbulence at the top of the mixed layer erodes the interface
separating the turbulent boundary layer and the quiescent , stable air of the free
troposphere. The rate of this process, which is called entrainment, depends upon the amount
of turbulence available and the amount of work the turbulence must do to erode the boundary.
The amount of turbulence is generally a function of the surface fluxes and the mixing
velocity, W.. The barrier the turbulence works against is primarily a function of the
bouyancy Jump, Aev and the lapse rate, rT., of the upper layer. The mixing in of the
warm, dry air from above the inversion creates considerable fluctuation in temperature and
water vapor with a resultant large increase in CT2 , C0

2, and CTQ.
Using Deardorff's 16 model of the interfacial region, Wyngaard and LeMone 12 have

developed a model to predict the structure functions

CT2 - Aev (i + c)rThl/ 3 (We/W*)FTT (9a)

C 2 4(&Q)2 (l + a)r Thl/ 3 (We/W*)/&ev (9b)

CTQ - A(l + *)rTh l/3 (We/W,)FTO (9c)

where AO is the jump in water vapor density (remember that AQ is negativel), We is the
entrainment rate (m/s), FTQ and FTT are functions that relate virtual temperature
fluctuations to the temperature fluctuations 12.

The final step in obtaining a structure function formulation is to select a
parameterization of We. Wyngaard and LeMons chose the second order entrainment model
equilibrium rate16

We - 0.8 Qov/((1 + a) rTh) (10)

and eaisin excellent agreement with NCAR aircraft data. A muc)t more common assumption isthat 07

We - 0.20ov/AOv (11)
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In fact, the major uncertainty in the application of Eq. 9 is the entrainment energy
(bouyancy, surface shear, inversion shear, and atmospheric waves) and dozens of entrainment
relationships18 exist. Another problem is the appropriate value of the interface
thickness, a. Typical values of a range from 0.1 to 0.5 with an average of 0.3. Also,
since a represents an ensemble average property, a single measurement (by a radiosonde, for
instance) may not give an accurate estimate. Note that if Eq. 10 is used, a and rT,
drop-out of the structure function calculation (Eq. 9). Another source of error in the
Wyngaard and LeMone model is the assumption that the average rate of dissipation of
turbulent kinetic energy, ei, in the interfacial layer is simply one half the free
convection prediction

€i - 1/2 Cfc - 0.2 gOov/T (12)

Since the CN2 prediction is proportional to c-1/3, an underestimate of ci wuuld
lead to an overestimate of CN2 . Thus, wind shear at the inversion not only leads to an
underestimate of We but also to an underestimate of ci (note that these two errors tend
to compensate). A summary of four cloud-free measurements in the interfacial Layer made
during the MAGAT experiment19 is shown in Table 2.

Table 2. Boundary layer and interfacial layer data from four MAGAT aircraft orofiles
Date 473 5/4 5/4 5/7
Time, PST 1610 1024 1201 1043
h, m 320.00 300.00 330.00 200.00

.35 .5 .5 .5
Aev,K 6.5 11.00 9.00 7.00
AQ,g/m3  -4.4 -5.2 -5.2 -2.00
Qov, Km/s .027 .022 .02 .02
rT' K/km 9.00 10.00 15.00 9.00

2-i 3 .65 .6 .7 .S
i/ M2/313 .06 .12 .067

(0.2g Oov/T)sl/ 3 ,m2 /3 /s .056 .053 .052 .052
.90 .78 .86 .66

C1J K2/m2/3  3.4 x 10-3 7.3 x 10-4 3.8 x 10- 3  6.0 x 10- 3

CQ2t, (g/m3)2/m2/3  9.6 x 10-3  1.8 x l0- 3  6.4 x 10- 3  1.9 x 10-

Table 3 compares the measured 'structure functions with the Wyngaard and LeMone model
using Eq. 10 and Eq. 11.

Table 3. Comparison of MAGAT interfacial structure function data
with entrainment model 2redictions

Source <CTZ' , K
2/m"/ <Cp. .

Measurements 3.5 x l0- 3  4.9 X 10- 3

We a 0.8 Qov/((l + a)rTh) 4.5 x ln"3  5.6 x 10- 3

We a 0.2 Qov/hev 0.6 x 10- 3  0.7 x 10- 3

Free troposphere
Except in regions of clear air turbulence (CAT), C 2 in the free troposphere is quite

small. Typical val es of CT2 are on the order of 10-9 K2/m2/3 , leading to
C1 2 % 5 x 10-18 m- 2 3 at Z = 5km. The decrease of atmospheric prussure with
increasing altitude is another factor that reduces C%,2 relative to CT

2 (Fig. 7).
There are measurements in this region 20,21,22,23,24 but there are no physical models.
There are several phenomenological models 21,25 that relate CT2 to local temperature
vertical gradients. A good review of the subject is given by Hall 26 .

Aerosol modeling

Given the validity of the micrometeorological relationship of molecular and aerosol
extinction to actual optical extinction, the optical model is considered to be equivalent to
the meteorological. For molecular extinction, the pressure, temperature and relative
humidity are obtained within the framework of the MBL structure as depicted in Fig. 1.
Thus, surface layer measurements of temperature, relative humidity, plus the height, h. are
sufficient to calculate the molecular extinctions (using LOWTRAN) throughout the MBL. If,
in addition, a surface layer measurement of the aerosol spectrum is available, then it is
also possible to calculate the aerosol extinction profile throughout the MBL using an
aerosol mixed layer structure which we shall describe. Although temperature and humidity
are easily available over the ocean, routine measurements of aerosol spectra are most
certainly far in the future. Thus, it is necessary to develop a model which allows
estimates of the aerosol spectrum from routinely available oceanic meteorological data. The
remainder of this section will be devoted to the aerosol problem since the molecular is
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considered to be, by comparison, more than adequately solved.

Aerosol basics

Before attacking the aerosol MBL problem, it is necessary to establish some general
background in marine aerosols.

Relative humidity. It is well known that aerosol particles over the ocean are usually in
the form of dissolved or coated droplets. The size of these droplets chan es as liquid
water is absorbed or lost in response to its relative humidity variations2 . For
example, let ro be the particle radius at some reference water vapor saturation
So(S - RH/l00) and r be the particle radius at ambient saturation S, then

r - ro g(S) (13)

where (assuming So - 0.8)

g(S) - 0.81 exp(0.066 S/(l.058 - S)) (14)

This relation is particularly useful because one can eliminate variations of the aerosol
spectrum due solely to humidity variations by dealing with the spectrum as it would appear
at the reference humidity. Thus, if N(r) is the ambient aerosol number density, we can
transform N(r) to the reference saturation spectrum N(ro),

N(r/g(S)) - M(ro ) - N(r) g(S) (15)

Since some of the results to be described are in aerosol volume format, V(r) - 4/3vr3 N(r),
the equivalent volume relation should be considered

V(r/g(S)) - V(ro ) - V(r)/g 2 (S) (16)

Aerosol spectrum components. Over the ocean, the aerosol spectrum at small sizes
(r T 1.0 um) is dominated by particles of nonlocal origin (continental background) while the
larger sizes (r > 1.0 um) are primarily sea salt droplets produced by whitecaps. Since
particles wilth radius less than 0.1 Um do not contribute significantly to extinction at
visible and IR wavelengths, the continental aerosols can be reasonably represented by the
Junge distribution

Vc(ro) - A/re (17)

If we define Vs(ro) as the sea salt component, then the total aerosol spectrum in the
MBL is

V(ro) - vr(re) + Vc(ro) (18)

Accurate broad band aerosol spectrum measurements can be used to determine the
continental influence by assuming that at ro - 0.1 im, Vs(0.l) - 0 and therefore

A - 0.1 vc(0.1) - 0.1 V (0.1) (19)

This assumption is corroborated by aerosol data taken in the North Atlantic (JASIN exper-
iment) that has been averaged in ensembles based on wind speed (Fig. 8). The lack of wind
speed dependence of the aerosol volume at ro a 0.1 Mm demonstrates that these particles
are primarily of continental origin. The average value of A obtained was 1.0. The claim
that A is an index of continental influence is further validated by a comparison of NPS
values of A with atmospheric Radon activity obtained by NRL 28 during CEWCOM-78 (Fig. 9).
Given a measurement of A, one can now calculate the sea salt aerosol spectral component

Vr(re) - V(ro) - A/re (20)

One note of cautions in order to be consistent with the literature, we will use aerosol
coefficients A and 9: these bear no relation to A and B in the section on turbulence.

Aerosol MaL structure

The necessity for the partitioning of aerosol components becomes clear when one considers
the different particle sources they represent. Because sea salt particles are produced by
whitecaps at the sea surface, they tend to remain trapped within the MBL. Thus we assume
Vs - 0 for Z ) h. Continental aerosols are assumed to be distributed with approximately
constant mixing ratio both above and below the MDL. The vertical structure being proposed
is depicted in Fig. 10. Recall that we are describing the aerosol density at reference
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saturation, So = 0.9. Since the saturation tends to increase with increasing altitude in
the MBL (this is consistent with Fig. 1 where O v and dewpoint are nearly constant,
therefore T must decrease roughly one degree per hundred meters;, the actual measured
spectrum (or extinction coeffi<Lent) will tend to increase.

2
,
3
u Conversely, if one

takes a measured verti --o. .e of aerosol volume and removes the humidity dependence
using Eq. 16, then the ance humidity aerosol volume is nearly height independent in the
MBL (Fig. 11). Note th6 -osol volume decreased rapidly above the MBL indicating that, in
this case, most of the v. a.e in the MBL is due to sea salt particles.

Surface layer gradient. One issue not covered in the structure shown in Fig. 10 is the
near surface vertical gradient. Since continental aerosols are not surface produced, they
do not have significant near surface gradients. In the case of sea salt aerosols, the
surface gradient is produced by a near balance of turbulent upward transport of particles
and the gravitational (Stokes fallout) downward transport. 3 , 2 For particles in the
0.1 Um to 15 um range, this gradient is very small at heights greater than a few meters and
probably not worth further consideration (except for long wavelength, near surface rR
applications).

Scaling law perspective. The development of physical scaling equations for aerosols is
somewhat simpler than for CN2 because one is not modeling the fluctuations but rather
the mean aerosol profile. Thus, the aerosol model is roughly analogous to the mean profile
of water vapor - there is surface production (evaporation) and continental background (water
vapor advected over the ocean) which is present above and below the MBL. Unlike the CN2

case, however, the surface layer aerosol density cannot be "a priori" calculated without
consideration of mixed layer processes (this is also true of the mean -ater vapor density).
This will be discussed in later sections.

The Wells-Munn-Katz (WMK) model

The present state-of-the-art in bulk aerosol models is represented by the WMK
model33'34 where the continental component is the Junge type (Eq. 17).

Nc(r) - a/r0
4  (21a)

B - 3A/(4w) (21b)

and the sea salt component has a wind speed and height dependence of the gaeta function
form29

Ns(r) - F(ro,u) exp(-Z/ho) (22)

(ro - rig(S) as in Eq. 13 and Eq. 14).

The exponential decay with scale height, ho - 800m, though in clear disagreement with
the well-mixed assumption (Fig. 11), is probably adequate for some applications (satellite
remote sensing, for example). Although there are ongoing efforts to improve the sea salt
modeling function3 5, it is certainly worthwhile to examine in detail the near surface
performance of the WMK model.

W1MK model evaluation using JASIW data. This evaluation is basically a comparison of WMK
model predictions of aerosol extinction based on measurements of relative humidity and wind
speed with extinctions obtained from measurements of aerosol spectra. A twenty minute
averaging period was used for RH and aerosol spectra. The wind speed used in Eq. 22 was an
average over the 12 hours preceding the aerosol data in order to take into account the long
response times required for sea salt aerosol generation. This comparison (Fig. 12) asks
*given a wind speed and relative humidity, how well does the model predict the observed
extinction"? Clearly, the WMK model predicts very well on with a rather large
standard deviation (about half an order of magnitude, or a factor o ). A considerably
more stringent comparison asks "given an observed extinction, how well does the model
predict this extinction"? This comparison (Fig. 13) is considerably less favorable,
particularly in the extremes of good visibility and low visibility conditions. A certain
amount of disagreement of this type is expected when comparing quantities that are subject
to experimental error. However, we found that a considerable part of the discrepancy is due
to overestimation of the continental aerosol component (WMK assume 9 a 1.7 while JASIN gives
a - 0.24). If we change 8 to 0.24 and repeat the comparison (X's in Fig. 13), we get some
improvement. Furthermore, there is considerable correlation between visible extinction and
the amount of continental aerosol7 the high visibility conditions have, relatively, much
smaller continental aerosol densities while the low visibility.conditions have relatively
greater continental aerosol densities. The disagreement at high extinction values is due to
the inaccuracy of the relative humidity measurement which is critical under near fog and
heavy haze conditions, where RH 1 100%.
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It is important to realize that the WMK model is an average continental, equilibrium sur-
face generation model. Variations of the continental aerosol were more than an order of
magnitude during JASIN. The sea salt component is also subject to considerable deviations
from equilibrium (this is one of the reasons for the 12 hour average wind speeds). The dev-
iations from average and equilibrium values are more important for operational usage and
somewhat less important for climatological and spectrum evaluation usage. An example where
both usages are affected is the estimation of IR extinction using visible extinctions (visi-
bility observations) and empirical assumptions about their relationship. We have plotted
the visible to IR extinction ratio in Fig. 14 with lines indicating the WMK model predic-
tions using two different continental aerosol coefficients. Since the continental aerosol
coefficients are correlated to visibility, the correct ratio depends not only on wind speed
but also the visibility observation.

Although we have dealt with the stochastic properties of ensemble averages of the aero-
sols, variations about the average are not necessarily random but are primarily due to
changes in synoptic and mesoscale weather patterns. In the case of the continental aerosol
component, this is basically a question of air-mass history. In the case of the sea salt
aerosol, it is a question of changing surface generation rates (wind speed) and the produc-
tion, removal and mixing mechanisms in the marine atmospheric boundary layer. Since the
surface generated aerosols are quickly mixed verically to fill the boundary layer up to the
capping inversion, rapid changes in the inversion height, h, will be reflected in changes in
the sea salt aerosol density and, therefore, the extinction coefficient. rn Fig. 15 we can
see that the fractional variations in h are highly correlated with variations in the visible
extinction. The correlation with 10.6 Um extinction is considerably less because the large
size aerosols (which are heavier contributors to IR extinction) reach equilibrium more
quickly after changes in surface conditions.

The aerosol mixed-laver model

The sea surface is a continuous source of sea salt aerosols in the marine boundary layer.
These surface produced aerosols can be characterized by a surface flux spectrum, Fs(ro),
which represents the volume of aerosol per particle radius interval produced per square
centimeter of ocean surface each second as a function of aerosol particle radius. This
quantity is a function of wind speed.

The continuous production of sea salt aerosols is balanced by several removal mechanisms.
One obvious mechanism is the loss of particles as they fall back to the surface. This set-
tling under gravity is called "Stokes fallout" and is characterized by the Stokes velocity.
The particles are transported vertically by turblence in the marine boundary layer and
maintained at a uniform density throughout the mixed layer. The growth of the height of the
layer constitutes another loss mechanism called "entrainment", which was discussed in the
interfacial turbulence section of this paper. The final loss mechanism is "rainout" which
occurs when the particles become condensation nuclei in the formation of clouds.

Given the surface flux spectrum and a parameterization of the removal mechanisms, one
could predict evolutions of the aerosol density spectrum by the following equation

36

hdVs/dt - Fs - (We + Ws)Vs  
(23)

where W. is the Stokes velocity

we M 1.57 x 10-2 (1 + 1.2 (0.9l/g(S))3 )ro2g2 (S) (24)

where rO is in um, W, is in cm/sec. In Eq. 23 we have left out the cloud formation
removal mechanism because it acts on a much longer time scale. One assumption implicit in
Eq. 23 is that the convective mixing velocity, W*, is much larger than Ws . Since W*
is typically I m/sec while W. is on the order of 0.1 m/sec for the largest particles
(r - 15 ljm) considered here, the assumption is reasonable.

The surface flux spectrum F9(ro), which is a major factor in Eq. 23, is not well
known. Some preliminary estimates are available from laboratory measurements37 . In an
effort to obtain improved information about P,(ro), the CEWCOM-78 data have been used to
evaluate the surface flux. 38 Since the other terms of the expression were measured, one
simply calculates F. using a rearrangement of the terms. Thus, the final expression for
the flux calculation is,

rs - hdVs/dt 4 (We 4 Wo)Vs  (25)

A period was chosen from CEWCON-78 where all data were available, the synoptic conditions
were fairly constant, the wind speed was reaonably constant and a good mixed layer was
present (5/20-S/21). Because of the reasonably constant wind speeds during the 20 hour
CEWCom-78 period, we were able to improve the statistical certainty for the Fs calculation
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by combininq all the data from the period, assuming that the flux would be a reasonable
representation for U - 9 m/sec wind speed. Thus, we now have the surface flux spectrum at a I
single wind speed. In order to estimate the flux at other wind speeds, we note that the
right hand side of Eq. 25 is nearly independent of wind speed for equilibrium conditions.
Therefore, the flux at one wind speed can be related to the flux at other wind speeds if the
equilibrium volume spectra are known:

F,(U 1 ) a Fs(U 2 ) Vs(U1 )/V s (U2) (26)

We have available from JASIN a large set of ensemble averages of aerosol volume spectra
at different wind speeds (Fig. 16). It is a simple matter to apply this data to Eq. 26,
using the CEWCOM-78 aerosol flux and equilibrium spectrum to generate the surface volume
flux spectra as a function of wind speed (Fig. 17).

Equilibrium. During periods of fairly constant boundary layer conditions, the aerosol
spectrum may be in a state of equilibrium (that is, dV,(ro)/dt - 0). Under these
conditions, the average equilibrium spectrum is

-s(ro) a Fs(ro)/(W* + Ws) (27)

Vs(ro), which is a function of wind speed, humidity and entrainment, is analogous to the
WMK sea salt spectrum which is also for an "average" condition. Deviations of Vs(ro )
from Vs(ro) are described by Eq. 23.

Non-equilibrium. For time periods of a few hours, the aerosol spectrum may not be in a
state of dynamic equilibrium. If we rewrite Eq. 23 in the following form:

dvs/dt + Vs/TP = Fs/h (28)

where the time constant, Tp, is

T = h/(We + Ws ) (29)

then we see the analogy of aerosols and a capacitor charged by an applied "voltage", Fs,
through a "resistance", (We + Ws)-l. In this analogy, the "capacitance", is h.

The response time of the aerosol density is a strong function of particle radius because
W s -. r

2. Values of Tp for S - 0.8 and h - 400 m are given in Table 4.

TABLE 4 The equilibrium time constant for aerosols
at S - 0.8, h = 400 and We - 0.4 cm/s

r, LIm 0.5 1 5 10 15
T., hours 28 22 11 3.5 0.5

The boundary layer mixing time, Tm, Which represents the time required for changes in

aerosol density to be evenly distributed throughout the marine layer is:I, - h/We (30)

For the CEWCOM-78 analysis period (h - 400 m and W. = 0.6 m/s) we find Tm M .16 hours.
Therefore, short term variations in mixing volume (dh/dt) will lead to changes in the
aerosol density because the production response time is much slower than the mixing time.
Thus, for time periods on the order of one hour, changes in the aerosol density (dVs/dt)
will be highly correlated with the mixing volume term (h-1 Vs dh/dt). The effect willbe particularly noticeable for smaller particles and is the explanation for Fig. 15.

Discussion

Given the great difficulty of direct optical measurement of the propagation properties
(CM2 and extinction vertical profiles) of the MBL, it is necessary to estimate these
properties from more practical, routine atmospheric data. This is accomplished by relating
the optical properties to micrometeorological quantities (turbulence, molecular constituents
and aerosol spectra) where the atmospheric physical foundation exists for the development of
reasonably simple scaling models. The first step in this process was to verify the opti-
cal-meteorological relationships in the marine regime. Although CN2 and extinction were
considered separately, both models were cast in the same framework of a well mixed marine
layer capped by an entraining inversion; the structure of the r§BL is a key element in model-
ing of the height dependences above the near surface region, Since the mixing and entrain-
ment process (also, the turbulence) are driven by the surface fluxes, the key element of
this effort was the development and verification of the bulk aerodynamic method which allows
calculation of the fluxes and scaling parameters from routine surface observations (sea
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surface temperature, air temperature, relative humidity and wind speed). A measurement for
estimation of the mixed layer height, h, will permit calculation of the profiles for most of
the remaining (non-surface) MBL. Both CN 2 (near the inversion) and aerosol spectral
structure models require knowledge of the entrainment rate which necessitate at least a
radiosonde estimate of the temperature and humidity discontinuitiesat the inversion and the
free troposphere temperature lapse rate. The aerosol model also requires a specification of
the continental component. At present this is an assumed climatological mean but it could
be related to visibility observations or air-mass trajectory.

The accuracy of these models is very difficult to access. In the case of turbulpnce, the
accuracy of the input data is critical. For aerosols, the variations of continental 'erosols
and open ocean mixed layer effects are simply not very well known. Baseo solely on our
experience, a best guess of the RMS error of the turbulence model is about a factor of two
(average over the MBL); for extinction the error is about a factor of three.
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